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Abstract: We present the full details of a calculation at next-to-leading order of the mo-

mentum diffusion coefficient of a heavy quark in a hot, weakly coupled, QCD plasma.

Corrections arise at O(gs); physically they represent interference between overlapping

scatterings, as well as soft, electric scale (p ∼ gT ) gauge field physics, which we treat

using the hard thermal loop (HTL) effective theory. In 3-color, 3-flavor QCD, the

momentum diffusion constant of a fundamental representation heavy quark at NLO is

κ = 16π
3 α2

sT
3(ln 1

gs
+ 0.07428 + 1.9026gs). We extend the computation to a heavy funda-

mental representation “probe” quark in large Nc, N=4 Super Yang-Mills theory, where

the result is κ(SYM) = λ2T 3

6π

(

ln 1√
λ

+ 0.4304 + 0.8010
√

λ
)

(where λ = g2Nc is the t’Hooft

coupling). In the absence of some resummation technique, the convergence of perturbation

theory is poor.
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1. Introduction

In the earliest stages of the Big Bang the universe was a relativistic plasma. We can now

produce such a relativistic plasma in the lab via heavy ion collisions. In both cases the

plasma is transient-in the early universe it lasted only around 10−6 seconds and in a heavy

ion collision it lasts little more than 10−23 seconds. Since a system which remains always

in equilibrium leaves essentially no traces of its earlier state, the most interesting physics

in both situations is nonequilibrium physics. And in the early universe at temperatures

above 10’s of GeV [relevant for electroweak baryogenesis [1], leptogenesis [2], gravitino

production [3], moduli production and destruction, and other relics] that plasma was weakly
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coupled. The same is true in principle for the early development of extremely high energy

heavy ion collisions, though it is an open question whether this is a reasonable treatment

at available energies.

The natural language to study such plasmas is nonequilibrium quantum field theory.

For plasmas near equilibrium (relevant for most of these interesting problems) one can

study linear deviations from (local) equilibrium by studying unequal-time equilibrium cor-

relations and using linear response theory [4]. The tools for defining equilibrium finite

temperature field theory and for performing weak coupling expansions have been known

for over 40 years [5, 6]. Nevertheless, our ability to calculate thermal and nonequilibrium

phenomena is surprisingly immature. For thermodynamical properties we now understand

how to compute perturbatively very well; for instance, the best known quantity, the ther-

modynamic pressure, is known past fifth order [7 – 9]. We also understand that to compute

real-time processes we need to perform a resummation of certain plasma effects via the

so-called Hard Thermal Loops (HTL’s) [10].

However surprisingly few gauge invariant real-time correlation functions have been

computed even at leading order, and even fewer are known beyond this level. In particular,

transport coefficients — shear viscosity, baryon number diffusion, electrical conductivity,

heavy quark diffusion, bulk viscosity, and so on — are of considerable importance, since

they describe the relaxation of a system which is relatively close to equilibrium. However,

even leading order calculations of these quantities only became available quite recently,

and none of them are known beyond leading order.

This is a major gap in our understanding of finite temperature field theory. In par-

ticular, it has been known for some time that the rate of convergence of the perturbative

series in the thermal theory can be much worse than in the vacuum theory. For instance,

Braaten and Nieto [8] argued that the convergence of perturbation theory was poor unless

αs . 0.1, due to physics at the so-called electric screening scale ∼ gT (where the loop

expansion really is only an expansion into powers of g.) It may be possible to rescue,

or at least improve, the convergence of perturbation theory using various resummation

techniques [11, 12]. However neither of these issues has been explored for dynamical (un-

equal time) quantities. In this context exactly one interesting gauge invariant quantity is

known at next-to-leading order; the deeply virtual dilepton production rate [13]. However

this quantity involves short physical time scales and is not sensitive to the electric gT

scale, and is therefore not representative of the other transport coefficients, which are. For

these “soft-sensitive” quantities, we do not know what a next-to-leading order computa-

tion involves, we do not know how well the series will converge, and we do not know what

resummation techniques might be available or how well they may work.

The simplest such quantity is the heavy quark diffusion coefficient, first computed at

leading order in [14]. This is a quantity of phenomenological interest, which sets the rate at

which the velocity of a heavy quark equilibrates with that of its environment. In a recent

Letter [15] we have presented the result of a computation of the heavy quark diffusion

coefficient in full QCD to next-to-leading order. Here we present the full details of this

calculation, as well as its extension to N=4 super-Yang-Mills theory (N=4 SYM). An

outline of the paper is as follows. In the next section we summarize the problem, discuss
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Figure 1: Processes responsible for heavy quark diffusion at leading order: Coulombic scattering

between a heavy quark (double line) and either a quark or a gluon.

the relevant physics, and present the results. Then section 3 presents our approach (HTL

effective field theory) and reviews the leading order calculation. Section 4 presents the body

of the calculation of the NLO diffusion coefficient, and section 5 extends this treatment to

N=4 Super-Yang-Mills theory. A technical appendix discusses the analytical properties of

some of the functions we encounter in the calculation.

2. Overview and results

2.1 Definition of heavy quark diffusion

A heavy quark, M ≫ T , in or near equilibrium has a typical momentum squared p2 ∼
MT ≫ T 2 large compared to the plasma scale and it therefore takes a parametrically long

time for the momentum to change appreciably. This means that momentum changes accu-

mulate from many uncorrelated “kicks,” so on long time scales p will evolve via Langevin

dynamics,
dpi

dt
= −ηD pi + ξi(t) , 〈ξi(t)ξj(t

′)〉 = κ δijδ(t − t′) . (2.1)

The relaxation rate ηD and the momentum diffusion coefficient κ are related by a

fluctuation-dissipation relation, ηD = κ
2MT , which follows on general thermodynamical

grounds. Thus the dynamics of the nonrelativistic heavy quark is completely set by the

single parameter κ, which we compute to next-to-leading order.

2.2 Qualitative origin of NLO effects

At leading order in the weak coupling expansion, the momentum diffusion coefficient is

set by the t-channel Coulomb scattering processes illustrated in figure 1, in which the

scattering target can be a light quark or a gluon (Compton-like processes are suppressed for

nonrelativistic heavy quarks.) An important feature of weakly coupled plasmas, relativistic

and nonrelativistic, is that the total rate for Coulomb scattering is quadratically divergent

in the limit of small momentum transfer |q| [16]. Such a divergence is of course unphysical

in a medium of charged particles, and is cut off by screening effects1 at the momentum

scale q ∼ mD ∼ gT .

1In relativistic plasmas there still remains a logarithmic divergence due to un-screened magnetic scat-

terings, but this cancels in physical quantities and will not concern us here.
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The momentum diffusion coefficient κ is sensitive not to the total scattering rate, but

to the weighted average,

κ ≡ 1

3

∫

d3q
dΓ(q)

d3q
q2 , (2.2)

where dΓ(q)/d3q denotes the differential probability per unit time for the momentum of the

heavy quark to change by q. The two additional powers of q2 present in eq. (2.2) reduce

the quadratic divergence of the total rate
∫

d3qdΓ/d3q to a logarithmic divergence, cut off

at q ∼ mD. The logarithm reflects the fact that the heavy quark momentum diffuses due to

a range of momentum transfers, from the many soft scattering events, which individually

have q ∼ gT but occur on a rate Γsoft ∼ g2T , to the rare hard scattering events with q ∼ T ,

occurring on a rate Γhard ∼ g4T .

Usually interaction corrections involve powers of g2, and for large momentum transfer

processes this is true. But the presence of the Coulombic divergence, cut off by screen-

ing effects, means that the details of soft momentum exchange and plasma screening are

relevant to heavy quark diffusion already at leading order. Now consider the contribution

from gluons to the Debye screening scale [17]:

m2
D = 4TA g2

∫

d3k

(2π)3
nB(k)

k
+ (fermion contribution) . (2.3)

Here TA = Nc = 3 is the trace normalization of the adjoint representation and nB is the

Bose distribution function. At small k the integral behaves like ∼ g2T
∫

d|k|, due to the

singular nature of the Bose-Einstein function nB(k) ∼ T/k. Thus the contribution from

gluons with k ∼ gT represents O(g) of the total strength of plasma screening.

However, the soft gluon contribution is not computed correctly by the above expression.

The derivation of eq. (2.3) assumed free massless propagation of the particles responsible for

screening, but gluons with O(gT ) momenta themselves experience O(1) screening effects.

Therefore one must recompute that part of plasma screening which arises from the O(gT )

gluons. This calculation is complicated by the fact that interactions between soft gluons

are also strongly modified by plasma effects, described by the HTL effective theory [10, 18].

Thus, since a relative O(g) fraction of eq. (2.3) arises from soft gluons, a correct treatment

of the effect they produce will produce an O(g) correction to the physics which cuts off the

infrared logarithm in κ, and therefore an O(g) correction to the result.

For similar reasons, in an O(g) fraction of soft scattering events, the plasma particle

which strikes the heavy quark is itself a soft gluon with momentum ∼ gT . But the dis-

persion and spectral weight of such gluons are strongly modified by the plasma and this

contribution to the “target density” must also be reconsidered.

Other NLO corrections can be expected to arise from interference between overlapping

scattering events, as illustrated in figure 2. Since the total scattering rate is ∼ g2T , both

for the heavy quark and for the light particles which scatter it, and since small angle

scatterings can have a duration up to ∼ 1/gT (this can be read off, for instance, from

the virtuality of the exchanged gluon), an O(g) fraction of scattering events overlap with

another scattering. Thus the individual diagrams in figure 2 are only down by O(g) relative

to the leading processes. Corresponding virtual corrections to the leading order scattering
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K
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Diagram 4

K
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Diagram 5

K P
K P

Diagram 2 Diagram 3

Diagram 6 Diagram 7

P

K

P

K

Figure 2: Diagrams which can interfere when two scattering processes overlap. Here K and P

are the initial momenta of two distinct hard particles, which can be quarks or gluons.

process will naturally also arise at this order. However, the appropriate question to ask is

not about the probability for scattering events to overlap, but rather how much do they

interfere with each other. In QED, the small angle scattering of a particle occurring during

another scattering event has little impact on that event, and correspondingly one finds a

parametric cancellation between diagrams 1 and 2 of figure 2 (and between diagrams 4

and 5 and between diagrams 6 and 7, and among the associated virtual processes; diagram

3 is absent altogether in QED.) However, in QCD, instead of a cancellation one gets a

commutator of group theory factors: the very frequent soft scatterings which occur in the

plasma do matter, because they change the colors of the particles.

Note however that this source of O(g) NLO corrections and the preceding one are

not clearly distinct. Indeed, diagram 3 of figure 2 can be understood as the special case

of the diagram in figure 1, where the external gluons are soft and in the Landau cut.

This suggests that, to make the qualitative discussion here more precise, we will need to

perform a careful diagrammatic approach based on power counting. There is one common

feature of the sources for correction we have listed, however; all involve the influence of

soft gluons. This observation suggests that the calculation may be rephrased in terms of

an effective theory of gT scale physics, in which the hard scale ∼ T has been integrated

out. This is precisely Braaten and Pisarski’s HTL effective theory [10]. Carrying out a

careful diagrammatic calculation within this effective theory is the subject of the body of

this paper; in the remainder of this section we will present the results.

2.3 Results: QCD

The squared matrix elements for the processes of figure 1, summed over the initial and

final states of the light scattering targets and final states of the heavy quark, and averaged
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over the initial states of the heavy quark, have been evaluated in [19], yielding

κLO ≡ g4CH

12π3

∫ ∞

0
k2dk

∫ 2k

0

q3dq

(q2 + m2
D)2

×















Nc nB(k)(1+nB(k))

(

2 − q2

k2
+

q4

4k2

)

+Nf nF (k)(1−nF (k))

(

2 − q2

2k2

)

,

(2.4)

where CH = 4
3 in QCD is the quadratic Casimir of the heavy quark representation, and

mD =
√

1.5gT in QCD with Nf=3 flavors of light quarks. Formally taking mD ≪ T , the

integral is dominated by k ∼ T and q in the logarithmic range mD . q . T . The leading

behavior in g of eq. (2.4) can be obtained from the leading behavior in m2
D/k2 of the q

integral. Making room for the next-to-leading order correction C, the result can be written:

κ=
CHg4T 3

18π

([

Nc+
Nf

2

][

ln
2T

mD

+ξ

]

+
Nf ln 2

2
+

NcmD

T
C + O

(

g2
)

)

. (2.5)

Here ξ = 1
2 −γE + ζ′(2)

ζ(2) ≃ −0.64718. The leading order part of eq. (2.5) was given explicitly

in [19] (it could also have been extracted from the nonrelativistic limit of earlier results [14,

20].) The dependence of the next-to-leading order correction on physical parameters is

contained in the coefficient multiplying C, which itself is a pure number: all of the above-

mentioned next-to-leading order corrections depend on physical parameters in the same

way as an O(mD/T ) fraction of the gluon contribution to κLO.

Expression eq. (2.4) itself contains O(g) corrections, giving rise to a rather trivial con-

tribution2 to C, C2→2 = 21
8π ≃ 0.8356. It arises wholly from the k ∼ gT region of the gluon

contribution to eq. (2.4), where the result of the q integration is poorly described by the

leading term of its m2
D/k2 expansion, which was used to obtain the leading order behavior

eq. (2.5). Although slightly tedious, the evaluation of C2→2 is entirely straightforward and

we do not present it here. In section 4 we compute the difference between the full next-

to-leading order momentum diffusion coefficient, and what is already incorporated in κLO,

and obtain C̃ ≃ 1.4946. Thus C ≡ C2→2 + C̃ ≃ 2.3302.

Our result eq. (2.5) is plotted in figure 3. A simple-minded estimate of the regime of

validity of perturbation theory can be given by equating the size of the correction to the

size of the leading-order result. What is usually referred to in the literature as being the

leading order result is eq. (2.4), numerically integrated at a given value of the coupling

(this is the curve called “leading order” in figure 3): the correction becomes as large as

this leading order result when αs & 0.04. This suggests that at that point perturbation

theory starts to get into trouble. For this reason, and as should be clearly suggested by

the plot, we do not believe that our calculation can be directly used as an “improvement”

to the determination of κ in the context of heavy ion collisions, where phenomenologically

realistic values of the coupling are in the range αs ∼ 0.3 − 0.5. Rather our results signal

difficulties with the approach.

Nevertheless we would not like to sound overly pessimistic and conclude that our results

signal that no prediction beyond αs = 0.05 is possible. Rather, the real question now is

2In [15] this contribution was named Ceq. (4).

– 6 –



J
H
E
P
0
2
(
2
0
0
8
)
0
8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 1 1.5 2 2.5

0.050.01 0.40.30.20.1

κ
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4
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3

gs

αs

Next-to-leading order (eq. (2.5))
Leading order (eq. (2.4))

Truncated leading order (eq. (2.5) with C=0)

Figure 3: Comparison of leading and NLO results for Nf = 3 QCD as a function of coupling.

how large the higher order corrections are, and more pertinently, which parts of C may

duplicate themselves in higher-order terms, in some more or less predictable (and therefore

resummable) fashion.

Consider for instance the difference between the two lowest curves of figure 3, which

is attributable to C2→2, up to terms which are of yet higher order in the mD/T expansion

of eq. (2.4). This contribution, which can be evaluated knowing only the tree-level matrix

elements with massless external states (and HTL corrections resummed on the exchanged

gluon), is better described as an “ambiguity” in the leading-order result rather than as a

correction to it. This ambiguity is large because the Coulomb scattering processes against

soft gluons (which give the small k contribution to eq. (2.4)) are poorly described by the

leading term of an mD/T expansion. This is unrelated to the question of whether these

processes are correctly described by the right-hand side of κLO, which is the most pertinent

question to ask if we are concerned with higher order terms. Actually, our calculation tells

us that the effect of the HTL changes in the dispersion relation and interaction strength

of the soft gluons is relatively modest, essentially given by the pole-pole contribution of

section 4.3.4, of order C(A),pole−pole ∼ −0.20. Thus it appears that this region of phase space

is not so poorly described by eq. (2.4), and that simply defining this full expression to be

the leading order result should provide a reasonable resummation of the contribution C2→2.

Along the same lines, there is another contribution to C which has a simple physical

interpretation and which would be easy to include into the leading order calculation. As

we will discuss in subsection 4.2, just over half of the remaining correction arises from a

shift in the (real) Debye screened propagator 1/(q2 + m2
D) appearing in eq. (2.4). This can

be understood as an NLO momentum dependence in the Debye screening mass m2
D. This

momentum dependence can be resummed in a few ways. One way would be to solve for it

in the 3D Euclidean effective theory nonperturbatively or via a gap equation (though this

approach appears to be special to heavy quark diffusion, where the exchange momentum

– 7 –
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is strictly spatial). Another method would be to replace m2
D in eq. (2.4) with the full

momentum-dependent leading-order self-energy at general q (though this procedure does

not appear to be gauge invariant).

For these reasons we think with some optimism that two thirds of the difference between

the lowest and highest curves in figure 3 can be absorbed in a relatively simple systematic

resummation scheme, and at most only one third represents complicated physics that will

be really difficult to resum. Such a resummation scheme might then extend the reach of

perturbation theory to αs ∼ 0.15 or so-high enough for almost all cosmological applications,

though still not enough to be much use for heavy ion physics. Clearly such issues of

resummation are an interesting problem for future work.

2.4 N=4 super Yang-Mills

Results for heavy quark diffusion in the strong coupling regime of N=4 super Yang-Mills

(SYM) have been obtained in the literature, exploiting the AdS/CFT correspondence [21,

22]. It seems interesting to study the heavy quark momentum diffusion coefficient also

at weak coupling in this theory, for the purpose of comparison between the two regimes

and for comparison between this theory and ordinary QCD. The leading order result at

weak coupling has previously been given [23], and here we present the next-to-leading order

correction it receives.3

We begin with a brief description of N=4 SYM and of heavy quarks in this theory. In

addition to the gauge field Aµ, N=4 SYM contains four Weyl fermions and six real scalars,

all transforming under the adjoint representation of the gauge group. The theory contains a

single dimensionless coupling constant g, which sets the strength of the gauge, Yukawa and

scalar interactions; the Lagrangian is completely determined by the supersymmetry [24].

The strong coupling results are obtained in the large Nc limit of the theory with gauge group

SU(Nc), and for this reason we will express our results in terms of the t’Hooft coupling

λ ≡ g2Nc. What is meant by a “heavy quark” in this theory is an N=2 massive hypermulti-

plet added to it, transforming under the fundamental representation of the gauge group. In

terms of the N = 2 field content of N=4 SYM, this heavy hypermultiplet is minimally cou-

pled to the N = 2 gauge multiplet of the theory, but is not directly coupled to the massless

matter hypermultiplet. This is the conventional setup employed in AdS/CFT studies [21].

In the large mass M ≫ T limit, processes which would change the identity of the heavy

particles, from heavy quarks to heavy scalars and vice-versa, are suppressed [23]. Thus the

heavy fermion carries an approximately conserved U(1) charge and it makes sense to speak

about its momentum diffusion coefficient, with no reference to its scalar superpartners. In

addition to the scattering processes depicted in figure 1, in this theory at leading order

there are scattering processes involving light scalars, depicted in figure 4. Including these

3We present our results at leading order in the large Nc expansion. Strictly speaking, the theory at finite

g2 = λ/Nc and with added fundamental matter has a Landau pole; however it is valid perturbatively. To

generalize eq. (2.6) and eq. (2.7) to finite Nc, multiply the righthand sides by 2CH/Nc.

– 8 –
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Figure 4: Leading order diagrams involving scalars, which are present in N=4 SYM but not in

QCD.

processes, the leading order momentum diffusion coefficient κ can be written [23]:

κLO
(SYM) =

λ2

24π3

∫ ∞

0
k2dk

∫ 2k

0
q3dq

×



































































nB(k)(1 + nB(k))

(

2 − q2

k2
+

q4

4k4

)

/
(

q2 + m2
D

)2

+nB(k)(1 + nB(k))

[

5

(q2 + m2
D)2

+

(

1

q2 + m2
D

− 1

2k2

)2
]

+4nF (k)(1 − nF (k))

(

2 − q2

2k2

)

/
(

q2 + m2
D

)2

+2nB(k)(1 + nB(k))

(

q2

k2
− q4

4k4

)

/
(

q2 + m2
S

)2

+2nF (k)(1 − nF (k))
q2

k2
/
(

q2 + m2
S

)2
,

(2.6)

where m2
D = 2λT and m2

S = λT . The first line describes Coulomb scattering against gluons,

the second line describes Coulomb scattering against five real scalars and Coulomb plus

Yukawa-Compton scatterings against one real scalar.4 The third line is Coulomb scattering

of fermions, the fourth line is the scalar-mediated conversion of light gluons to light scalars

and vice-versa, and the last line contains the scalar-mediated scatterings against light

fermions. The integrals of eq. (2.6) were evaluated to leading order in mD/T ∼
√

λ in [23];

making room for the next-to-leading order contribution the result can be written:

κ(SYM) =
λ2T 3

6π

(

ln
2T

mD

+ ξ+
1

2
+

1

3
ln 2 +

√
2λ

6
C(SYM) + O

(

g2
)

)

, (2.7)

with ξ as defined below eq. (2.5). As for QCD, a rather trivial contribution C
(SYM)
2→2 =

15
2π − 3

π
√

2
≃ 1.7121 to C(SYM) arises from the expansion of eq. (2.6) to next-to-leading

order in
√

λ, coming from the k ∼
√

λT region of processes involving external bosons.

4Apparently the Yukawa-Compton scattering processes against scalars (the second diagram in figure 4)

were not included in the calculation of Vuorinen and Chesler [23]. This caused an error in their determination

of the constant term in eq. (2.7); they found 7

12
rather than 1

2
.
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Figure 5: Comparison of next-to-leading and leading order results for heavy quark diffusion in

N=4 SYM theory.

Another part of C is precisely the same as the “difficult” part of the QCD calculation,

C̃(QCD) ≃ 1.4946. The remainder C̃(SYM) ≃ 0.19172 is calculated in section 5. Thus

C(SYM) = C
(SYM)
2→2 + C̃(QCD) + C̃(SYM) ≃ 3.3984.

This result is plotted in figure 5. As the figure shows, the convergence of the series

is somewhat better than in QCD. Viewed as a function of the t’Hooft coupling λ the

correction is 100% of the leading value for λ ≃ 1.71, to be compared with the QCD value

of αs = 0.033, which is λ = 1.26. Viewed as a function of the Debye screening scale,

the comparative convergence in SYM would seem even better; the 100% correction point

occurs for mD = 1.85T , whereas it is mD =
√

3
2gT = 0.79T . However, estimates of this

kind can sometimes be deceptive: the fact that at fixed mD/T the NLO correction in SYM

is comparatively smaller than in QCD can be mostly attributed to the leading order result

being stronger in SYM, due to its larger number of matter fields (which also scatter with a

larger group theory factor, being in the adjoint representation.) However, this additional

physics that is present in SYM suffers from relatively modest NLO corrections, the most

severe corrections still being associated with soft gluons. Thus, although the leading order

result has a wider range of validity in SYM than in QCD, it seems reasonable to expect

the range of validity of the NLO correction itself to be roughly similar in SYM and QCD,

in terms of mD/T .

3. Effective theory and leading-order analysis

Our first step towards a rigorous analysis of the momentum diffusion coefficient κ is a non-

perturbative definition [22] in terms of a force-force (electric field-electric field) correlator

with Wilson lines connecting the electric fields:

κ ≡ g2

3dH

∫ ∞

−∞
dt TrH〈W (t;−∞)† Ea

i (t)taH W (t; 0)Eb
i (0)t

b
H W (0;−∞)〉 . (3.1)
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The trace runs over the representation of the gauge group of the heavy quark, and the

Wilson lines W act on this representation. Intuitively, eq. (3.1) is exactly the force-force

correlator of eq. (2.1), with the forces given by electric fields and the Wilson line repre-

senting the gauge rotation of the heavy quark due to propagation, which ensures gauge

invariance. Because of operator ordering issues, the Wilson lines shown are not equivalent

to connecting the E fields with an adjoint Wilson line. The Wilson lines also incorporate

the effect of the heavy charge on the plasma (which is why they must go back to time

−∞). In general they introduce nontrivial representation dependence into the heavy quark

diffusion constant, and in fact such Wilson lines are even required in QED (diffusion of

ions in a QED plasma depends on the ionic charge Z in a more complicated way than Z2

only because of these Wilson lines, which account for the reaction of the plasma to the

presence of the charge). However we will see that to the order we work here, they can be

replaced by an adjoint Wilson line.

Our approach is to calculate this correlation function within HTL effective field theory.

This is an infrared effective description valid below a cutoff scale ∼ T which describes gauge

fields and fermion fields, resumming into the Lagrangian certain O(T 2) plasma effects.

Perturbatively this introduces corrections to the propagators and vertices which become

O(1) at the scale ∼ gT , which is a natural scale in HTL effective theory. The effective theory

requires matching to the full thermal theory in the UV, requiring counterterms both in the

Lagrangian parameters and in correlation functions such as eq. (3.1). Perturbation theory

within the HTL effective theory is expected to converge in powers of g, which intuitively can

be though of as the usual factor g2 times a Bose statistical factor evaluated at the scale gT ,

nB(gT ) ∼ 1/g. The HTL calculation can also encounter infrared divergences, arising from

the unscreened low-frequency magnetic gluons. The appearance of such an IR divergence

signals the breakdown of perturbation theory and the need for nonperturbative information

about the ultrasoft magnetic sector. We expect such IR divergences at some finite order

in perturbation theory, but this proves to be beyond the NLO level we consider here.5

Let us proceed with the leading order calculation of the correlator in eq. (3.1). At

leading order one may replace the Wilson lines with identity operators and use the nonin-

teracting form of the electric field correlator,6 Ei = ∂iA0 − ∂0Ai. The time integral means

we need the result at zero frequency and so the ∂0Ai piece does not contribute.7 Fourier

transforming to the momentum basis, we rather immediately obtain

κLO =
g2CH

3dA

∫

d3q

(2π)3
q2〈A0a(ω = 0, q)A0a(0)〉 =

g2CH

3

∫

d3q

(2π)3
q2G>

00(0, q) . (3.2)

The Wightman propagator is to be evaluated within the HTL effective theory. Using

5We believe that most transport coefficients are sensitive to nonperturbative magnetic physics at O(g2),

which is the relative contribution of these magnetic fields to transverse momentum diffusion for a moving

particle (v ∼ 1) in the soft electromagnetic fields of the HTL effective theory. Because the heavy quark

considered here has v ≪ 1, we believe magnetic physics arises at a higher order than O(g2).
6We work in [−+++] metric contentions and 4-vector potential Aµ = (A0, Ai) with A0 the usual scalar

and Ai the usual vector potentials.
7This does not apply in gauges such as temporal gauge where the zero frequency gauge boson propagator

can display singularities.
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the KMS condition we can express the Wightman propagator in terms of the retarded

propagator,

G>(ω, q) = 2(nB(ω)+1)Re GR(ω, q) (3.3)

which is given in the HTL effective theory, in strict Coulomb gauge (which we use

throughout), by

G00
R (P ) =

i

p2 + Π00
R (P )

,

GT
R(P ) =

−i

P 2 + ΠT
R(P )

. (3.4)

with

Π00
R (P ) = m2

D

[

1 − η

2
ln

( |1 + η|
|1 − η|

)

+
iπη

2
θ
(

1 − η2
)

]

ΠT
R(P ) = m2

D

[

η2

2
+

η(1 − η2)

4
ln

( |1 + η|
|1 − η|

)

− iπη(1 − η2)

4
θ
(

1 − η2
)

]

, (3.5)

where η ≡ p0/p. Therefore the leading order momentum diffusion coefficient is

κLO = lim
ω→0

g2CH

3

∫

d3q

(2π)3
q2 2T

ω

πωm2
D

2q(q2 + m2
D)2

=
g2CHm2

D

6π

∫

q3dq

(q2 + m2
D)2

. (3.6)

This integral is UV log divergent, indicating the need to perform a matching calculation.

This is done by finding the result in the full theory, which gives eq. (2.4) (without the m2
D

terms in the denominator). In the range gT ≪ q ≪ T the two calculations agree; perform-

ing the k integration in eq. (2.4) treating q ≪ k reproduces eq. (3.6). The matching should

be performed in some way so that the UV region is equivalent to eq. (2.4) and the IR region

is equivalent to eq. (3.6). One way of doing this would be to compute both eq. (2.4) (without

m2
D factors in denominators) and eq. (3.6) each in dimensional regularization and add them;

the 1/ǫ factors will cancel and the finite parts will give a consistent leading order result [25].

Alternately one can simply insert m2
D factors in the denominators in eq. (2.4) (as has al-

ready been done) so that one expression is appropriate in the IR and UV. The error thus

introduced at large q is only NNLO (O(g2)) and will not interfere with our NLO calculation.

4. Details of the calculation

We now proceed to push the leading order calculation of the last section to the next order

in HTL perturbation theory.

4.1 Formalism and diagrams

The real-time correlator eq. (3.1) can be expressed in terms of correlators of fields ordered

along the Schwinger-Keldysh contour [6, 26]. We find it convenient to use the Keldysh or

ra basis (where one works in terms of the contour averaged or r and contour differenced

or a fields rather than the fields on the upper 1 and lower 2 contours). Throughout we
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Symbol Notation Expression for a free scalar field

ar Gra(P ) ≡ GR(P )
−i

P 2 − iǫp0

ra Gar(P ) ≡ GA(P )
−i

P 2 + iǫp0

rr Grr(P ) 2πδ(P 2)

(

1

2
+ nB

(∣

∣p0
∣

∣

)

)

Table 1: Graphical notation for real-time propagators in the Keldysh basis, and their expression

for a free scalar field. In all cases the momentum P flows from right to left.

will be using a graphical notation for the propagators of this formalism, summarized in

table 1. We draw retarded (ra) and advanced (ar) propagators with an arrow on them,

which points in the direction of the flow of time (thus towards the r index.) We draw the

rr propagators with a double cut in the middle of it; there exists no aa propagator in this

formalism. If one thinks of an rr propagator as carrying two outgoing arrows, leaving away

from the cut, then an r field at a vertex will have an incoming arrow on it and an a field

will have an outgoing arrow, leaving the vertex. Thus the ra assignments of the fields at

the vertices can be readily recovered from our notation. The nonzero (tree-level) vertices

in the Keldysh basis carry odd numbers of a indices, thus have an odd number of arrows

leaving them (but arbitrarily many r indices, or incoming arrows.) Interaction vertices

with one a index are precisely the same as the usual ones given in textbooks on quantum

field theory at zero temperature, and those having three a indices are smaller by a factor
1
4 . This notation is the same as in [27].

Diagrammatic rules that generate the HTL effective vertices have recently been worked

out for real time field theory in this basis [27]; we use the results and notation of that work,

which are summarized in figure 6. In the HTL limit the hard degrees of freedom behave

like classical point-like particles, which we draw as solid lines. The vertices (a) and (c) and

the eikonal propagator (d) of the figure together describe the generation and propagation

of disturbances of the hard particles’ distribution functions in a background gauge field,

and the two-point vertex (b) describes how these disturbances source gauge fields. These

effects depend on the four-velocity vµ = (1,v), v2 = 1, of the hard particle, which has

to be averaged over for every connected solid line that appears in a diagram; a factor of

m2
D/T must also be included. The rr propagator (e) describes statistical fluctuations in

the number density of the charges, and enters precisely once in the calculation of HTL

amplitudes with two external a gluons. The only HTL three point vertex that exists

has the ra assignment shown in (c); there exist no HTL amplitudes with more than two

external a gluons. Diagrams containing self-energy insertions on gluon propagators must

be discarded, since we are already using the HTL-resummed gluon propagators eq. (3.4).

The application of these rules reproduces calculations in classical Yang-Mills plasmas with

point-like (nonabelian) charges; more details can be found in [27].

In the Keldysh basis, correlators involving Keldysh a fields with soft momenta p ∼ gT

are systematically down by powers of g, relative to similar correlators with Keldysh r fields

(see e.g. [27]), implying that at NLO all fields entering eq. (3.1) can be taken to be Keldysh
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P µ
(a) a r = ip0 vµ

µ
(b) a r = ivµ

µ, a

c b(c) a r

r

= −vµfabc

(d) a r
P

=
−i

v · P−

(e) r r
P

= 2πδ(v · P )

Figure 6: Feynman rules for the HTL theory, with ra indices explicitly shown: (a)-(c) give inter-

action vertices and (d)-(e) give effective propagators for classical particles. All two-point functions

are proportional to the identity in color space, δab, not explicitly shown. A factor (m2
D/T ) plus an

integration
∫

dΩv

4π
over the four-velocity vµ must be assigned to every disjoint solid line appearing

in a diagram.

(A)

Q, b

R, c

P, a

ν
µ

ν ′

µ′

(C)

P

Q
µ ν

(B)

Q, a

R, b

P, c

(D)

Q

P

Figure 7: The Feynman diagrams that contribute to κNLO, with assignments of momenta, Lorentz

and color indices. All propagators are soft and HTL-resummed, and all interaction vertices include

HTL corrections; the arrows denote only the momentum flow. The Lorentz indices of the gluons

which connect to the heavy quark (shown as the double line) are all “0”.

r fields. This means that operator ordering issues actually are subleading, and that at NLO

the Wilson lines in eq. (3.1) can be traded for a single adjoint Wilson line.

It is convenient to write the electric field operators as Ei = −∂iA0 − DtA
i. Using the

equation of motion for a Wilson line, DtW (t; 0) = 0, we can then express

W (t; 0)†
(

DtA
ia(t) tah

)

W (t; 0) =
d

dt

(

W (t; 0)† Aia(t) tah W (t; 0)
)

, (4.1)

which contributes a total derivative to eq. (3.1) and can be dropped.8 Therefore the Ei

can be replaced with −∂iA0, and the desired correlation function becomes

κ =
CHg4

3dA

∫ ∞

−∞
dt 〈∂iA0 a(t)

[

Pe[
R t
0

dt′A0(t′),·]
]

ab
∂iA0 b(0)〉 . (4.2)

Expanding the Wilson line gives a series of correlators of A0 fields. The diagrams we

need at NLO are shown in figure 7.9 These diagrams are to be evaluated within the HTL

8This is true in any gauge in which the propagators show no divergent or pathological behavior in the

zero-frequency limit. These includes the covariant or Coulomb gauges, but not the temporal axial gauge.
9There is also a diagram which looks like (D) but with crossed gluon lines. It vanishes by rotational

invariance.
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effective theory, meaning that all propagators are HTL resummed and all vertices include

HTL vertices — except for the vertices on the Wilson line, shown as the double line in the

diagram. Naively there could be two more diagrams, corresponding to (A) and (C) but

with fermions rather than gauge bosons in the loops; but these are suppressed by at least

one factor of nf/nb ∼ g relative to the indicated diagrams and can be neglected at NLO.

4.2 Real part of self-energy diagrams (A) and (C)

Diagrams (A) and (C) of figure 7 correspond to NLO self-energy corrections to the soft zero-

frequency longitudinal gluon propagator, and can be decomposed into real and imaginary

parts. We begin with the real part of the self-energy. Since it is needed only at zero

frequency, it can be most convenient evaluated within the imaginary time formalism, in

which the frequency integrals are replaced by discrete sums over the (imaginary) Matsubara

frequencies ωn = 2πnT , n integer [28]. In this formalism, no analytic continuation of any

kind is required at zero external frequency, and we can directly analyze the discrete sum

over the Matsubara frequencies.

Because the HTL effective vertices vanish when all of their external frequencies are

zero, and are subleading by g2 (and at any rate, inappropriate) when one of their external

momenta carries a nonzero Matsubara frequency |ωn| & T , the diagrams involving HTL

vertices do not contribute at NLO. Similar cancellations occur for the transverse-transverse

contribution with tree interaction vertices, because the relevant interaction vertex vanishes

when all frequencies are zero, and the contribution of nonzero Matsubara frequencies only

receives O(g2) corrections (the presence of the hard frequency scale ωn in the loop propa-

gators ensures that the self-energy corrections on the loop propagators are down by O(g2),

and that the p dependence of the integral over spatial momenta can be expanded into

integer powers of p2/T 2 when p ≪ T . ωn.) The diagrams with topology (C), involving

four-point vertices, similarly do not contribute: the one with an HTL vertex is irrelevant

at zero external frequency, and when the vertex is a tree vertex the propagator in the loop

must be purely transverse (in the strict Coulomb gauge) since there is no interaction vertex

involving only A0 fields; but the HTL correction to this propagator at zero frequency van-

ishes. These simplifications, which are specific to the zero-frequency retarded self-energy

(and to a lesser extent, to our use of strict Coulomb gauge), are perhaps best understood

in terms of the dimensionally reduced effective theory [29].

We are thus left to evaluate the transverse-longitudinal loop with tree-level interaction

vertices and HTL-resummed propagators. Only the contribution from the zero Matsubara

frequency is needed,

δΠL
R(p) = −g2NcT

∫

q
4p2

(

1 − (p · q)2
p2q2

)

1

q2

1

r2 + m2
D

= −g2NcT

2π

[

mD +
p2 − m2

D

p
tan−1

(

p

mD

)]

, (4.3)

where
∫

q is shorthand for
∫ d3q

(2π)3
and where the arctangent takes values in [0, π

2 ]. The same

result could also have been obtained within the real-time formalism, albeit with somewhat
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more work. This O(g) correction to the real part of the longitudinal gluon self-energy

induces an O(g) correction to κ,

δκRe =
CHg2

3

∫

p
p2Π> 00(p)

[

1

(p2 + m2
D + δΠL

R(p))2
− 1

(p2 + m2
D)2

]

(4.4)

which, using the HTL approximation Π> 00(p) = m2
DπT/p, yields a contribution to the

dimensionless coefficient C from eq. (2.5):

C(A),Re = 6π

∫

p

p

(1 + p2)3

[

1 +
p2 − 1

p
sin−1

(

p
√

1 + p2

)]

=
3

2π

(

1 +
π2

16

)

≃ 0.77198914 . . . (4.5)

where we have rescaled p to p/mD. Note that the integral is both IR and UV safe.

4.3 Self-energy (A): imaginary part

4.3.1 Overview of the calculation

The imaginary part of the gluon self-energy diagram (A) is probably the most technically

challenging part of this calculation. Instead of calculating the (O(p0) term of the) imaginary

part of the retarded self-energy, we find it more convenient to calculate directly the Wight-

man self-energy Π> 00(P ) = 2(1 + nB(p0)) Im Π00
R , which can be evaluated directly at zero

frequency. There exists a finite temperature cutting rule, analogous to the familiar zero-

temperature Cutkowski rule, which expresses this function in terms of a sum over diagrams

that are divided into two parts by one cut [30, 31].10 The propagators traversed by the cut

are to be evaluated as Wightman propagators, G>(P ) ≡ (GR(P )−GA(P ))(1±n(p0)), for

bosons and fermions respectively, and the “amplitudes” on each side of the cut are to be

evaluated as the fully-retarded amplitudes of the real-time formalism, the retardation (e.g.

time flow) being taken to be away from the cut, toward the external legs. In terms of the

Keldysh ra basis, this means that all cut propagators attach to the neighboring vertices

like Keldysh r fields, and external legs of the self-energy diagram should be considered as

carrying Keldysh a indices. These fully-retarded amplitudes are the simplest analytic con-

tinuation of the imaginary-time amplitudes [32] (they are obtained by continuing all but one

of the external momenta from the upper-half complex frequency plane.) A direct proof of

the rule we use, within the real-time formalism, has also been given using the R/A formal-

ism [33] (see also [34], section 3.6.); the cutting rule presented there is the same as the one

we use, since the fully retarded amplitudes of the ra and R/A formalisms are the same.11

10Although the rules given by these authors deal with the imaginary part of the retarded self-energy, rather

than the Wightman self-energy, the rule we use follows from the latter by a straightforward application of

fluctuation-dissipation relations (KMS conditions).
11Since the most complicated self-energy diagram we need to evaluate contains “only” three loops, it is

also possible to give a direct proof of the cutting rule in our case, starting from the standard rules of the

Schwinger-Keldysh ra formalism applied to the calculation of the aa self-energy (which is the average of

the two Wightman self-energies.) We have checked this; although somewhat long the proof is a succession

of simple manipulations, which only involve the addition or subtraction of suitable closed loops of retarded

propagators to the diagrams (such closed loops in a diagram evaluate to zero.)
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(ii)(i) (iii) (iv)

Figure 8: The distinct cuts which can go through the self-energy diagram (A) of figure 7 with

two HTL effective vertices (drawn as loops), as explained in the text. Solid lines denote hard

propagators and the two gluon propagators carry soft momenta.

The four distinct types of cuts which contribute to the self-energy diagrams with two

HTL effective vertices are depicted in figure 8. As just mentioned, all cut propagators

are Wightman propagators, and they attach to the neighboring vertices like Keldysh r

fields. When soft gluon propagators are traversed by the cut, the small P approximation

G>(P ) ≈ Grr(P ) can be used. When HTL vertices are traversed by the cut, two hard

propagators are put on-shell; as discussed in more detail in [27], the corresponding ampli-

tudes are precisely given by the real-time HTL amplitudes having two external Keldysh a

indices. Physically, these amplitudes are obtained by making the eikonal approximation in

all propagators and vertices entering in the hard loop; the interested reader may readily

verify that this reproduces the HTL amplitudes with two Keldysh a indices as given by the

rules of section 4.1.

The cuts of type (i)-(iii) share a feature which is very pleasing from the viewpoint of

their numerical evaluation: they are given by expressions supported on the spectral weights

of the soft gluon propagators. In other words they split into pole-pole, pole-cut and cut-

cut parts, according to whether the momenta Q and R are restricted to lie on the position

of a plasmon pole, or to lie within the space-like region (“Landau cut”). This should

be obvious from figure 8. In contrast, cut (iv), which represents a (two-loop!) virtual

correction to the tree processes considered in section 2.2, might be expected to induce

additional complications since it leaves essentially unconstrained the gluon momenta that

appear in it. However, somewhat to our surprise, under the special circumstance p0 = 0

we were able to bring this contribution into a form manifestly supported within the cut-

cut region. The relevant manipulations are described below in greater detail. As far as

we know, this additional difficulty did not show up in previous HTL calculations, such as

Braaten and Pisarski’s pioneering evaluation of the gluon damping rate [35], or Braaten,

Pisarski and Yuan’s calculation of soft dilepton production [36], cut (iv) being kinematically

forbidden in these cases due to the the external momentum being time-like.

4.3.2 Evaluation of the cuts

In figure 9 we give explicit expressions for the HTL effective vertices entering figure 8

(i)-(iii), in terms of certain functions,

Mµν(Q,R) ≡
∫

dΩv

4π

vµvν

v · Q−v · R− , (4.6)

Kµν(Q,P ) ≡
∫

dΩv

4π
iπδ(v · Q)

vµvν

v · P− , (4.7)
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(1)

r

r

a = m2
Dg i2(−i)2fa′bc

∫

v

vµ′

vν′

v · P−

[

q0

v · Q− − r0

v · R−

]

≡ m2
Dgfa′bc × q0Mµ′ν′

(Q,R)

(2)

r

r

a
= m2

Dgfabc ×−q0Mµν(Q,R)∗

(3)

a

r

a = m2
DgT i3fa′bc

∫

v

vµ′

vν′

v · P− 2πδ(v · R)

≡ m2
Dgfa′bc ×−2Kµ′ν′

(R,P )

(4)

a

r

a
= m2

Dgfabc × 2Kµν(Q,P )∗

Figure 9: The HTL effective vertices that appear in figure 8 (i)–(iii), with ra indices shown. The

momenta, Lorentz and color indices are as suggested by the position of these objects in figures 7, 8.

V µν(Q,R) =
−1

m2
D

[

2q0ηµν + (R + P )µην0 − (Q + P )νηµ0
]

. (4.8)

which are related to the fully retarded HTL three-point vertex, its discontinuities, and to

the tree vertex, respectively. The Keldysh indices that appear on these effective vertices,

for the cuts (i)-(iii), are completely determined by the cutting rule we use.

With these basic building blocks in hands, the evaluation of the cuts of type (i)-(iii)

is relatively straightforward (our normalization is Π> 00(P ) = 2 Im Π00
R (P )(T/p0) with Π00

R

as in eq. (3.4):

Π> 00
(A),(i)(p)

Ncm4
Dg2T 2/2

=

∫

Q
Mµν(Q,R)Mµ′ν′(Q,R)∗ ρµµ′

(Q)ρνν′

(−R) ,

Π> 00
(A),(ii)(p)

Ncm4
Dg2T 2/2

=

∫

Q

[

−2Mµν(Q,R)Kµ′ν′(Q,P )∗ Gµµ′

R (Q)ρνν′

(−R)

+2Kµν(Q,P )Mµ′ν′(Q,R)∗ Gµµ′

A (Q)ρνν′

(−R)
]

+(Q ↔ R) ,

Π> 00
(A),(iii)(p)

Ncm4
Dg2T 2/2

=

∫

Q
4Kµν(R,P )K∗

µν′(Q,P )Gµµ′

R (Q)Gνν′

A (R)

+(Q ↔ R) , (4.9)

all of which are manifestly real. We are using the approximation Grr(Q) ≈ ρ(Q)/q0, with

ρ ≡ (GR −GA) being the spectral density. The contribution from cut (i) is also manifestly

positive, as expected from its rather obvious interpretation as the square of a one-loop

amplitude (although at this stage it might not be obvious that the sum over Lorentz

indices yields a sum of positive terms; this is confirmed in section 4.3.3.) In eq. (4.9) the

contribution from diagrams involving the tree interaction vertices is not shown explicitly;

it can be recovered by the simple substitution, for each appearance of the fully retarded
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Figure 10: Zoom on the ra structure of the propagators appearing in the HTL diagrams con-

tributing to cut (iv) of figure 8.

HTL vertex Mµν(Q,R) or its complex conjugate,

q0Mµν(Q,R) → q0Mµν(Q,R) + Vµν(Q,R) . (4.10)

Evaluating the cuts of type (iv) poses some additional difficulty, as mentioned above.

The HTL diagrams contributing to it are depicted in figure 8. The leftmost solid line in

these diagrams can be identified with the cut hard loop on the left-hand side of diagram

(iv) in figure 8, collapsed to a one-dimensional line [27]: the cut (rr) HTL propagator

replaces the two cut hard propagators in figure 8 (iv), and the retarded HTL propagator

on its right replaces the (eikonalized) third propagator of this hard loop. The reason why

there appears exactly one cut gluon, or HTL propagator, in the rest of the diagram is

because the object which stands on the right-hand side of the explicit cut in figure 8 (iv)

is a one-loop retarded amplitude (in the HTL theory.) The direct evaluation of these HTL

diagrams yields:

Π> 00
(A),(iv)(P ) = +2Re Ncm

4
Dg2T 2

∫

Q
2Kµν(P,Q)

×



















Mµ′ν′(Q,P )Gµµ′

R (Q)ρνν′

(R)
q0

r0

−Mµ′ν′(R,P )Gµµ′

R (Q)ρνν′

(R)
r0

r0

−2Kµ′ν′(R,P )Gµµ′

R (Q)Gνν′

A (R) + Vµ′ν′(Q,P )Gµµ′

R (Q)ρνν′

(R) 1
r0 .

(4.11)

Using standard methods of contour integration that make use of the analyticity of the

prefactor Kµν(P,Q) in the upper half q0 plane, this expression can be rewritten more

compactly. Specifically, we introduce a small iǫ prescription 1/r0 → 1/(r0 − iǫ) in all

places this appears. This is equivalent to displacing the contour of r0 integration slightly

below the real axis (or, equivalently, the contour of q0 integration slightly above the real

axis), and does not change the final answer since the numerator vanishes at r0 = 0, ρ(R)

being an odd function of r0. However, the introduction of this prescription makes it possible

to decompose ρ(R) into (GR(R)−GA(R)), the integral of each term remaining well-defined.

Decomposing also 2K(R,P ) into (M(R,P ) + M(−R,P )), and dropping all terms which
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are analytic in the upper-half q0 plane, one obtains:

Π> 00
(A),(iv)(P ) = +2Re Ncm

4
Dg2T 2

∫

Q
2Kµν(P,Q)Gµµ′

R (Q)Gνν′

R (R)

×
{

q0Mµ′ν′(Q,P ) − r0Mµ′ν′(R,P )

r0 − iǫ
+

Vµ′ν′(Q,P )

r0 − iǫ

}

.(4.12)

Although eq. (4.12) is valid for arbitrary p0, a great simplification occurs when p0 = 0:

the denominator 1/(r0 − iǫ) is antisymmetric under Q ↔ R, modulo its iǫ prescription.

By enforcing symmetry of the integrand under (Q ↔ R) we can thus trade the prefactor

2K(P,Q) (whose support extends to q0 → ∞, a nuisance for numerical work) into the

better-behaved combination K(P,Q)+K(P,R) = 2Re K(Q,R), whose support lies entirely

within the region of spacelike Q and R, |q0| < min(q, r). Due to the explicit factor of q0

present in the numerator, the iǫ prescription in the denominator of the HTL terms (the

one involving Mµ′ν′) actually is unimportant and can be discarded, allowing (Q ↔ R)

symmetry to be enforced at no cost. However, no such factor of q0 multiplies the term

involving the tree vertex Vµ′ν′ , and enforcing the (Q ↔ R) symmetry in it gives rise to an

additional contribution proportional to δ(q0), coming from the mismatch of iǫ prescriptions.

Thus at p0 = 0 eq. (4.12) becomes:

Π> 00
(A),(iv)(p)

Ncm4
Dg2T 2/2

= −8Re

∫

Q
[ReKµν(Q,R)] Gµµ′

R (Q)Gνν′

R (R)

[

Mµ′ν′(Q,R) +
Vµν(Q,R)

q0

]

−4

∫

q
Vi0(q, r)G

T
R(q)G00

R (r)

(

δij − qiqj

q2

)

Im [Kj0(p, q) − Kj0(p, r)] . (4.13)

We remark that the apparent singularity at q0, in the term involving the tree vertex on

the first line, is illusory (this is why we dropped the iǫ prescription in it.) Indeed, since

the tree vertex with three A0 fields is identically zero, and the tree vertex between one

A0 and two transverse gauge fields is explicitly proportional to q0, a singularity could

only happen when one gluon is transverse and the other one is longitudinal. However,

in that case the prefactor ReKi0(Q,R) turns out to be explicitly proportional to q0. In

terms of the formulae for the Lorentz algebra given in the next section, the corresponding

statement is that XT−L ∝ q0. Thus the first line of eq. (4.13) is not sensitive to the q0 → 0

region. However, although the prefactor ReKi0(Q,R) = 1
2(Ki0(P,Q)+Ki0(P,R)) vanishes

at q0 = 0, Ki0(P,Q) itself does not. This is the reason why one gets a nonzero residue at

q0 = 0 in the transverse-longitudinal case (and only in that case), as given on the second

line of eq. (4.13).

To bring these expressions into a form suitable for numerical evaluation, we find it

convenient to decompose all individual factors into their real and imaginary parts. Doing
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so, the contributions eq. (4.9) and the first line of eq. (4.13) add up to (ρ = 2Re GR):

Π> 00
(A) (P )

Ncm
4
Dg2T 2/2

=

∫

Q



































ρ(Q)ρ(−R)
[

(Re M − Re K)2 − (Im KQ)2

−(Im KR)2 + (ReK)2
]

+4 Im G(Q)ρ(R) [(Re M − Re K) Im KQ + ReK Im KR]

+4ρ(Q) Im G(R) [(Re M − Re K) Im KR + ReK Im KQ]

+8 Im G(Q) Im G(R) [(Re M − ReK)Re K

− Im KQ Im KR] .

(4.14)

Here we have not explicitly written the contributions involving tree vertices, which are

recovered by the simple substitution eq. (4.10), and we have dropped all Lorentz indices,

which play no crucial role here. We are using the abbreviations M ≡ M(Q,R), KQ ≡
K(Q,P ) and KR ≡ K(R,P ). This expression incorporates a wealth of real and virtual

physical processes, as discussed in subsection 2.2.

In addition to eq. (4.14) we have the contribution from the q0 = 0 residue, given by

the second line of eq. (4.13). Using eq. (4.8) for Vi0 and performing the v integration we

can make the latter more explicit:

Π> 00
(A),q0=0

(P )

Ncm4
Dg2T 2/2

=
8π

m2
Dp

∫

q

1

q2(r2 + m2
D)

p · q
q2

=
1

mDp





tan−1
(

p
mD

)

mDp
− 1

p2 + m2
D



 . (4.15)

Here we performed the q integration by first doing the integration over the angle between

q and p, and then evaluating the integration over the magnitude q from its discontinuities

at its branch cuts at q = ±p+i[mD,∞). This zero-frequency contribution to eq. (4.13) may

appear odd-looking, compared to eq. (4.25). However, what we regard as truly remarkable,

is the fact that the contribution from cut (iv) (a two-loop virtual correction!), could, when

p0 = 0, be cast into a computer-friendly form supported on the spectral weights of the gluon

propagators. The leftover piece eq. (4.15) seems to be the price to pay for this welcomed

simplification. It is not clear to the authors whether such a structure persists for general

spacelike P with p0 6= 0.

4.3.3 The Lorentz structure

We have to sum over the Lorentz indices in expressions of the form

Mµν(Q,R)Gµµ′

(Q)Gνν′

(R)M∗
µ′ν′(Q,R) . (4.16)

This is where our choice of strict Coulomb gauge becomes particularly convenient. First, in

this gauge the retarded and cut propagators have the same Lorentz structure, see eq. (3.4).

Second, in this gauge the propagator decomposes into a longitudinal part G00 and two

spatial, strictly transverse components, Gij = GT (ǫiǫj + ǫ′iǫ
′
j). We can choose one of these

components, say, ǫ, to lie in the plane defined by q and r and the other, ǫ′, to be orthogonal

to this plane.

These three components of the gauge propagator will give rise to four structures in

evaluating eq. (4.16); one contribution proportional to (G00)2, one contribution propor-

tional to G00GT , and two contributions proportional to (GT )2, one of which arises from

the out of plane and one from the in-plane polarization states.
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The doubly longitudinal contribution to eq. (4.16) is trivial; it is |M00|2G00(Q)G00(R).

Consider next the G00(R)GT (Q) contribution. To evaluate the contribution we need to

study Mi0(Q,R), which, viewed as a vector, must involve a linear combination of qi and ri.

Since the coefficient of qi is annihilated by the Q transverse projector, only the coefficient

of ri contributes to eq. (4.16). We can find this contribution by applying a projector which

removes the piece proportional to qi:

M i0(Q,R) ≡ riMT−L(Q,R) + Terms proportional to qi ,

MT−L(Q,R) =
1

p2q2
⊥

(q2ri − q · rqi)M i0 , (4.17)

in which q⊥ denotes the component of q perpendicular to p, q2
⊥p2 ≡ |q × p|2 = |q × r|2 =

|r × p|2.
Now consider the contributions where both propagators are transverse. The function

Mij vanishes when contracted against one in-plane and one out-of-plane polarization vector,

by parity invariance in the out-of-plane direction. Therefore there are two contributions,

one arising from the in-plane projection of Mij and one from the out-of-plane projection

of Mij . The out-of-plane projection is

MT−T,A(Q,R) =

(

δij − r2qiqj + q2rirj − q · rqirj − q · rqjri

p2q2
⊥

)

M ij , (4.18)

and the in-plane projection, obtained by dotting Mij against the in-plane polarization

operator for each propagator, is

MT−T,B(Q,R) =
qr

p2q2
⊥

(

ri − q · r
q2

qi

)

(

qj − r · q
r2

rj
)

M ij . (4.19)

Using this procedure we find

eq. (4.16) = |M00|2G00(Q)G00(R) + 2r2q2
⊥|MT−L(Q,R)|2GT (Q)G00(R)

+|MT−T,A(Q,R)|2GT (Q)GT (R) + |MT−T,B(Q,R)|2GT (Q)GT (R).(4.20)

We have evaluated the scalar functions entering eq. (4.20) in terms of linear combina-

tions of M00(Q,R), 1, and two new functions L(Q) and L(R), with momentum-dependent

coefficients (that are real and analytic functions of q0.) In a condensed notation the result

can be written:

eq. (4.20) =
∑

i

Pi GQi(Q)GRi(R)Mi(Q,R)Mi(Q,R)∗ , (4.21)

Mi(Q,R) = XiM
00(Q,R) + YQi

L(Q) + YRi
L(R) + Zi , (4.22)

with

L(Q) ≡
∫

dΩv

4π

1

v · Q− (4.23)

and M00(Q,R) as defined in eq. (4.6). The sum over i in eq. (4.21) covers the four cases

L-L, T-L, T-T,A and T-T,B. The momentum-dependent coefficients Xi, YQi
, YRi

and Z,
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Index i Prefactor Pi GQi GRi Xi

L-L 1 G00 G00 1

T-L 2/q2p2q2
⊥ GT G00 −q0p · q

T-T,A 1 GT GT 1 − q2
0/q

2
⊥

T-T,B 1/q4
⊥p4q2r2 GT GT −q2

0p · qp · r

Index i YQi
YRi

Z
(HTL)
i Z

(tree)
i

L-L 0 0 0 0

T-L q2 −q · r 0 2/q0m2
D

T-T,A q0p · q/p2q2
⊥ −q0p · r/p2q2

⊥ 0 −2/m2
D

T-T,B q0q2p · r −q0r2p · q p2q2
⊥ 2q · rq2

⊥p2/m2
D

Table 2: The coefficients in the expansion eq. (4.21). The coefficient Zi appearing in the text is

the sum of its HTL and tree contributions Z
(HTL)
i and Z

(tree)
i , respectively.

as well as the prefactors Pi and choices of propagators, GQi and GRi , are tabulated in table

eq. (2). In this table we have separated the contributions to the “constant term” Z coming

from the HTL and tree vertices. The various discontinuities of Mµν which enter eq. (4.14)

can be obtained from the discontinuities of the basis functions entering eq. (4.22), which

are described in detail in appendix A.

4.3.4 Final expressions for diagram (A)

The Wightman self-energy Π> 00 enters the heavy quark diffusion coefficient κ through:

κ(A) =
g2CH

3

∫

d3p

(2π)3
p2

(p2 + m2
D)2

Π> 00
(A) (p) . (4.24)

Substituting formula eq. (4.14) into this, upon rescaling variables by mD and scaling out

the prefactor from eq. (2.5) in order to obtain the dimensionless contribution to C, we

obtain, using the decomposition eq. (4.21) and the results of appendix A:

C(A),main = 3π

∫

p

p2

(1 + p2)2

∫

Q

∑

i

Pi

×



























ρQi(Q)ρRi(−R)
[

(ReMi − ReKi)
2 − (Im KQi

)2

−(ImKRi
)2 + (Re Ki)

2
]

+4 Im GQi(Q)ρRi(R) [(Re Mi − ReKi) Im KQi
+ Re Ki Im KRi

]

+4ρQi(Q) Im GRi(R) [(Re Mi − ReKi) Im KRi
+ Re Ki Im KQi

]

+8 Im GQi(Q) Im GRi(R) [(Re Mi − Re Ki)Re Ki − ImKQi
Im KRi

] ,

(4.25)
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in which:

Re Mi − Re Ki ≡ −Xi

tan−1

(

p
√

q2

⊥
−q2

0

p·q

)

+ tan−1

(

p
√

q2

⊥
−q2

0

p·r

)

− π
2

p
√

q2
⊥ − q2

0

−YQi

1

2q
ln

(

q + q0

q − q0

)

− YRi

1

2r
ln

(

r − q0

r + q0

)

+ Zi,

Im KQi
≡ YQi

π

2q
,

ImKRi
≡ YRi

π

2r
,

Re Ki ≡ −Xi
π

2p
√

q2
⊥ − q2

0

, (4.26)

when |q0| < q⊥, and:

ReMi − ReKi ≡ −Xi

ln

(

|p·q+
√

q2

0
−q2

⊥
|

|p·q−
√

q2

0
−q2

⊥
|
|p·r+

√
q2

0
−q2

⊥
|

|p·r−
√

q2

0
−q2

⊥
|

)

2p
√

q2
0 − q2

⊥

−YQi

1

2q
ln

( |q0 + q|
|q0 − q|

)

− YRi

1

2r
ln

( |q0 − r|
|q0 + r|

)

+ Zi,

Im KQi
≡ Xi

πsgn (p · q)
2p
√

q2
0 − q2

⊥

+ YQi

π

2q
θ(q2 − q2

0),

Im KRi
≡ −Xi

πsgn (p · r)
2p
√

q2
0 − q2

⊥

+ YRi

π

2r
θ(r2 − q2

0),

ReKi ≡ 0, (4.27)

when |q0| > q⊥. The arctangents on the first line of eq. (4.26) take values in [0, π]. The

coefficients Pi, Xi, YQi
, YRi

and Zi, as well as the choices of propagator (transverse or

longitudinal), for the different choices of i, are listed in table 2. Expressions for the HTL-

resummed retarded propagators GR and ρ = GR −GA are given in eq. (3.4). The integrals

depend only on one scale, mD, which we have scaled out and should be set to 1 whenever

it shows up in the formulae. As was discussed earlier, the integrand naturally splits into

pole-pole, pole-cut and cut-cut contributions, according to whether the energies of the Q

and R propagators lie within the space-like region (the Landau cut) or on the plasmon pole.

The integral eq. (4.25) is (linearly) divergent at large q, due to the transverse-transverse

pole-pole contribution involving tree interaction vertices, which duplicates the leading-order

gluon-scattering contribution eq. (2.4). To obtain the correct contribution to the coeffi-

cient C̃(QCD) defined below eq. (2.5), this leading-order contribution must be subtracted;

this subtraction can be understood as part of a systematic matching procedure like that

discussed in section 3. More precisely, one should subtract the contribution to eq. (4.25)

which arises from the tree vertices (this corresponds to keeping only the Ztree
i part of Zi in

eq. (4.27), using the bare propagators.
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The |q0| ≈ q⊥ region presents some subtleties, that are discussed in greater detail in

the next section: due to the square root singularities that appear in the vertex functions

(in the terms proportional to Xi, in eq. (4.26)–eq. (4.27), which enter squared in eq. (4.25),

the frequency integral is potentially logarithmically divergent in the limit q0 → q⊥. In the

next section we verify that the divergences cancel out between the lower and upper limits,

|q0| → q−⊥ and |q0| → q+
⊥, although not individually. As a consequence the integral must

be evaluated using a Cauchy principal value prescription near q0 = q⊥. Actually in the

next section we show that in addition to this Cauchy principal value integral there is an

additional δ(q0 − q⊥) type of contribution eq. (4.32), giving C(A),q0=q⊥ ≃ 0.023333.

In addition to this, the zero-frequency leftover eq. (4.15) must also be included:

C(A),q0=0 = 3π

∫

p

p

(1 + p2)2

[

tan−1(p)

p
− 1

1 + p2

]

=
3π

32
≃ 0.294524 (4.28)

The evaluation of eq. (4.25) was performed by numerical integration independently by

the two authors. The integrals giving the cut-cut, pole-cut and pole-pole contributions are

respectively four, three, and two-dimensional. The independent evaluations used different

reparametrizations of the integration variables. For instance, the cut-cut integration can

be parameterized in terms of the magnitudes of q and r, the angle between them, plus

one frequency variable, or in terms of p, p · q, q2
⊥, and one frequency variable. Both

implementations used the Cauchy principal value prescription near q0 = q⊥ by “folding” the

integrals in order that the two individually divergent parts can be added together under the

integration sign and a convergent integral be obtained. We found satisfactory convergence

in all cases, and obtain C(A),main ≃ 0.5918. Combining with eqs. (4.28) and (4.32), we thus

find C(A),Im ≃ 0.9097.

There exist several ways to decompose eq. (4.25) into different contributions. One way,

although probably not gauge-fixing independent, is to separate the contributions according

to whether they have tree-level or HTL interaction vertices. Doing so, we find that the

contributions involving two HTL vertices are all relatively small, and add up to a relatively

modest ≃ +0.14. There are two large contributions involving two tree interaction vertices,

both of which come from the transverse-transverse loop: one is the pole-pole contribution

≃ −0.52, which describes the influence of the plasmon dispersion relations on the scatter-

ings, and the other one is the pole-cut contribution ≃ +0.56, which describes scattering

processes with the radiation or absorption of a soft plasmon. These two contributions hap-

pen to nearly cancel against each other, so the net contribution from diagrams with two

tree interaction vertices is also relatively modest, ≃ 0.12. The remainder of C(A),main comes

from the HTL-tree diagrams, which add up to ≃ +0.34, but originate from a large number

of terms with different signs. A large contribution comes from the transverse-transverse

cut-cut region, giving ≃ +0.50, but this is largely cancelled by the transverse-transverse

pole-cut region, giving ≃ −0.33. Similar cancellations happen between the transverse-

longitudinal cut-cut and pole-cut regions, which respectively give ≃ −0.20 and ≃ +0.18.

The remainder of the HTL-tree contributions comes from the transverse-transverse pole-
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pole contribution ≃ +0.30. We note that the total transverse-transverse pole-pole contri-

bution, which we expect to be gauge invariant on its own (because this diagram is the only

place where two soft transverse plasmons can appear) gives about ≃ −0.20.

4.3.5 A subtlelty near q0 = q⊥

We now investigate in more detail the region |q0| ≃ q⊥ of eq. (4.25). The purpose of this

section is to verify that the logarithmic divergences in this expression cancel out between

the lower and upper limits, |q0| → q−⊥ and |q0| → q+
⊥, so that this expression makes sense as

a Cauchy principal value integral. However, we will show that to take such a prescription is

not exactly the correct thing to do, but that in addition there is the contribution eq. (4.32).

One procedure for regulating the divergences near |q0| = q⊥ is to explicitly keep the

iǫ terms finite in the denominators of the HTL vertex functions M and K eq. (4.6): in

the time domain this regulation procedure is analogous to placing an upper bound on

the time separation between the external legs of the self-energy diagram. At finite time

separation no divergence is found, so that the cancellation we find in this section means

that no significant contribution to diagram (A) arises when the time separation between

the external legs becomes large (relative to 1/gT .) Our writing of eq. (4.25) is entirely

compatible with this regularization, since this expression follows from eqs. (4.9) and (4.12)

by simply decomposing each term into its real and an imaginary part; the Wightman

self-energy Π> is always purely real, even when this regulator is used.

All that gets modified at finite iǫ are the the explicit expressions for the HTL vertex

functions given in eq. (4.26)–(4.27). The only terms we need to keep track of are those

involving the function M00(Q,R) and its discontinuities, e.g. the terms multiplying Xi,

since all other terms (and propagators) are well behaved in the kinematic region |q0| = q⊥.

Keeping the iǫ’s finite in the formulae of appendix A, explicit expressions for the singular

part of the various combinations of M00(Q,R) and its discontinuities that enter eq. (4.25)

can be obtained:

KQ ∼ −π

2p





θ(−p · q)
√

q2
⊥ − (q0 + iǫ)2

+
θ(p · q)

√

q2
⊥ − (q0 − iǫ)2



 ,

KR ∼ −π

2p





θ(−p · r)
√

q2
⊥ − (q0 − iǫ)2

+
θ(p · r)

√

q2
⊥ − (q0 + iǫ)2



 ,

ReK ∼ −π

4p





1
√

q2
⊥ − (q0 + iǫ)2

+
1

√

q2
⊥ − (q0 − iǫ)2



 ,

Re M − ReK ∼ [2θ(−p · q) + 2θ(−p · r) − 1] ReK . (4.29)

These expressions are valid at both positive and negative q0, where the value they take is

the complex conjugate of their value at positive q0. Let us first have a look on the bracket

from the first line of eq. (4.25), which multiplies ρ(Q)ρ(R). Using the fact that (because

p · r = p2 − p · q) it is impossible for both p · q and p · r to be simultaneously negative, one
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can see from eq. (4.29) that the singular behavior of (Re M − ReK)2 is always precisely

equal to that of (Re K)2. Thus the singular part of this bracket can be written:

2(Re KQ)2 − (Im KQ)2 − (Im KR)2 = Re(K2
Q + K2

R) (4.30)

a result which is explicitly well-behaved and given by a Cauchy principal value integration12

near |q0| = q⊥. The bracket on the fourth line, multiplying ImG(Q) Im G(R), similarly

yields a finite Cauchy principal value integral. The cancellation of the divergences between

the lower and upper limits can be seen from the explicit expressions for the divergent part

of the bracket:

(Re M − ReK)Re K ∼ π2

4p2

2θ(−p · q) + 2θ(−p · r) − 1

q2
⊥ − q2

0

θ(q⊥ − q0) ,

− Im KQ Im KR ∼ π2

4p2

sgn (p · q)sgn (p · r)
q2
0 − q2

⊥
θ(q0 − q⊥) . (4.31)

The two lines are opposite of each other for all values of the momenta, as follows from the

fact that p · q and p · r are never negative at the same time.

The brackets on the second and third lines of eq. (4.25) are manifestly finite when

ǫ = 0, since the real parts of M and K are only divergent for |q0| → q−⊥, and the imaginary

parts of the K’s are only divergent for |q0| → q+
⊥: products of these terms contain no

divergence. However, at finite ǫ the supports of the divergent parts of these terms overlap

with each other, on a region of size O(ǫ). The contribution from this region remains finite

in the ǫ → 0 limit, giving rise to a δ(q0 − q⊥)-type of contribution. It can be extracted by

just taking the imaginary part of products of expressions from eq. (4.29), using the formula

mentioned in footnote 12; upon rescaling variables by mD one obtains the dimensionless

contribution to C of eq. (2.5):

C(A),q0=q⊥ = 3π4

∫

p

p2

(1 + p2)2

∫

Q

δ(q0 − q⊥)

p2q⊥

∑

i

Pi X2
i

×



















(θ(−p · q) − θ(−p · r))
×
[

Im GQi(Q)ρRi(R) + ρQi(Q) Im GRi(R)
]

+θ(p · q)θ(p · r)
×
[

Im GQi(Q)ρRi(R) − ρQi(Q) Im GRi(R)
]

≃ 0.0233326 , (4.32)

which turns out to be a small contribution, most of which arising from the transverse-

transverse contribution (this result was obtained by numerical quadrature).

4.4 The diagram (B)

The diagram (B) represents the expectation value of the correlator eq. (4.2), in which the

12This follows from the standard formula 1

x−iǫ
= P

1

x
+ iπδ(x), which is applicable here since everything

it multiplies is smooth as q0
→ q⊥.
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Figure 11: Zoom on the ra structure of the propagators in the HTL diagrams with topology (B),

when the zero frequency gauge boson propagator (rightmost one) is cut (rr). These diagrams form

a telescopic sum.

heavy quark’s Wilson line is expanded to linear order in the A0 field,

κ(B) =
CHg3

3dA
fabc

∫ ∞

−∞
dt

∫ t

0
dt′〈∂iA0 a(t)A0 b(t′) ∂iA0 c(0)〉, (4.33)

=
CHg3

3dA
fabc

∫

Q,R

2ip · q
r0 + iǫ

〈A0 a(Q)A0 b(R)A0 c(X = 0)〉 2πδ
(

p0
)

, (4.34)

all fields being Keldysh r fields. The assignment of the momenta in this section is illustrated

in figure 7; P ≡ Q+R. The fact that one of the fields carries zero frequency is probably best

visualized if time translation symmetry is used to move the middle field’s time argument

to t′ = 0: restricting the time argument of the leftmost field to t > 0 (thus picking up a

factor of two), the rightmost field’s time argument t′′ in the first line of eq. (4.34) is then

restricted to the range −∞ < t′′ ≤ 0. However, due to the antisymmetry of the group

theory factor, this range can be extended to cover the whole real axis, the contribution

from 0 ≤ t′′ < ∞ giving zero.

Since there exists no bare interaction vertex with three 0 Lorentz indices, this corre-

lator only receives a contribution from the diagram with an HTL three-point vertex. The

dominant diagrams that are allowed by the rules of the ra formalism either involve two cut

(rr) gluon propagators and one retarded propagator, with an arr HTL vertex, or one cut

propagator and two retarded propagators, and an aar HTL vertex. We find it convenient

to organize the resulting diagrams into two classes, according to whether the gluon prop-

agator which carries zero frequency is cut or retarded. When it is cut, one has the HTL

diagrams of figure 11, which form a telescopic sum evaluating to:

κ(B),Re =
CHm2

Dg4Nc

3

∫

p,Q

2ip · q
r0 + iǫ

G00
rr(p)

∫

v











−G00
A (Q)

1

v · Q+

1

v · R−G00
R (R)

+G00
R (Q)

1

v · Q−
1

v · R+
G00

A (R).

= −CHm2
Dg4Nc

3

∫

p,q
G00

rr(p)
2p · q

(q2 + m2
D)(r2 + m2

D)

∫

v

1

v · q−v · r+
. (4.35)

The second line follows from the first by means of contour integration in the complex q0

plane. The fact that one ends up with an integral involving only zero-frequency propa-

gators is analogous to what happened for the real part of the gluon self-energy diagrams

in section 4.2, which we evaluated in terms of the zero Matsubara modes. This is why

we called this contribution “κ(B),Re”. The v integration gives the function −M00(q,−r),
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Figure 12: Zoom on the ra structure of the propagators in the HTL diagrams with topology

(B), when the zero frequency gauge boson propagator (rightmost one) is retarded. Some crossed

diagrams are not shown.

which is evaluated in eq. (A.6). Because it is symmetrical under q ↔ r the factor 2p · q
can be traded for a p2. Upon rescaling variables by mD and scaling out the prefactor

CHg4T 2mD/18π from eq. (2.5), one obtains the dimensionless contribution:

C(B),Re = −6π2

∫

p,q

p

(1 + p2)2(1 + r2)(1 + q2)

π − cos−1
(

q·r
qr

)

√

q2r2 − (q · r)2
≈ −0.0482933 , (4.36)

in which the branch of the inverse cosine on the first line ranges from 0 to π. The final

result was obtained by means of numerical quadrature.

When the zero-frequency gluon propagator in eq. (4.34) is a retarded propagator, one

has the HTL diagrams of figure 12, the evaluation of which yields:

κ(B),Im =
CHm2

Dg4Nc

3

∫

p,Q
G00

A (p)

[

iq · p
r0 + iǫ

− ir · p
q0 + iǫ

]

×



















G00
rr(Q)G00

rr(R)q0M00(Q,R)∗

−TG00
R (Q)G00

rr(R)K(Q,P )∗

+TG00
rr(Q)G00

R (R)K(R,P )∗

+2TG00
R (Q)G00

rr(R)K(P,Q) ,

(4.37)

where we have symmetrized the factors from eq. (4.34) under (Q ↔ R). This expression

bears much similarity to those encountered in section 4.3 for the imaginary part of the

self-energy diagram (A). From now on the discussion closely parallels that given there, so

we will be brief. Indeed, the first three lines of the brace in eq. (4.37) are very similar to

the expressions in eq. (4.9) pertaining to cuts (i) and (ii), except that now there is only

one HTL vertex which gets cut. These expressions are also nearly in a form suitable for

numerical integration, since they are manifestly supported on the spectral weights of the

gluon propagators (they decompose into pole-pole, pole-cut and cut-cut contributions, like

eq. (4.25).) However, just like eq. (4.11) from section 4.3, the fourth line of eq. (4.37) poses

additional difficulty: its support extends beyond these regions. In section 4.3 this difficulty

was dealt with by writing Grr(R) = (GR(R)−GA(R))/(r0 − iǫ), then dropping the GA(R)

term using its complex analyticity in the upper-half q0 plane, and finally using (Q ↔ R)

symmetry to convert 2K(P,Q) into the better-behaved combination (K(P,Q)+K(P,R)) =

2Re K(Q,R). When one repeats these manipulations here, one first needs to switch the

iǫ prescription in the iq · p/(r0 + iǫ) prefactor in eq. (4.37), in order to make it coherent

with the one we wish to introduce. This gives rise to a contribution proportional to δ(q0);

otherwise the results are very similar.
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We note that eq. (4.37) is manifestly real, the contribution from q0 < 0 being the com-

plex conjugate of the contribution from q0 > 0. Taking the real and imaginary parts of each

term, as we did in section 4.3.2, the contribution to dimensionless C eq. (2.5) can be written:

C(B),Im = 6π

∫

p,q

p2

1 + p2































∫

dq0

2π

1

q2
0

×



















ρ(Q)ρ(−R) [Re M(Q,R) − ReK(Q,P )]

+2ρ(Q) Im G(R) Im K(R,P )

+2ρ(R) Im G(Q) Im K(Q,P )

+4
[

ImG(Q) Im G(R) − |q0=0

]

Re K(Q,P )

+
π

2pq⊥
[Grr(q) Im G(r) + Im G(q)Grr(r)] /T .

(4.38)

≃ ≈ −0.07338 (4.39)

The fourth line in this expression arises solely from the fourth line of eq. (4.37) and

the subtraction “|q0” in it means to subtract Im G(Q) Im G(R) evaluated at q0 = 0; this

subtraction is convenient because it makes the integrand well-behaved13 near q0 = 0, and

it is justified by the fact that
∫∞
−∞ dq0K(P,Q)/(q0 + iǫ)2 = 0. A part of the “leftover” from

q0 = 0 on the last line of eq. (4.38) arises from the manipulations described in the preceding

paragraph, concerning the fourth line of eq. (4.37), and another part of it arises when the

real part of the square bracket in eq. (4.37) is taken, since this contains a δ(q0) term.

Explicit expressions for the functions Re M , ReK and ImK that appear in eq. (4.38)

can be obtained by setting X = 1 and YQ = YR = Z = 0 in eq. (4.26) and eq. (4.27)

of section 4.3.4. We evaluated eq. (4.38) by numerical quadratures; the integration splits

into pole-pole, pole-cut and cut-cut contributions (plus the zero-frequency leftover) and

their evaluation is very similar to the self-energy diagram (A). There is one important

subtlety, though: neither the pole-cut, cut-cut nor q0 = 0 contributions are individually

well-defined, as they are all (logarithmically) ultraviolet divergent in the limit of large r,

q fixed (taking r > q, for definiteness). However their sum is UV convergent; here we

skip the explicit verification of this fact. What this implies is that these contributions

must be added under the integration sign, e.g. the content of the large brace in eq. (4.38)

must be added up before the integration over spatial q and p is performed. The largest

part of eq. (4.39) originates from the pole-pole region: thus diagram (B) mostly describes

scatterings against longitudinal plasmons (this diagram is an interference term between

the Coulomb and Compton channels for longitudinal plasmon scattering.)

4.5 Self-energy (C): imaginary part

The three different diagrams contributing to the cut self-energy diagram of type (C) are

shown in figure 13. A direct evaluation of these diagrams would yield:

Π> 00
(b) (P ) = g2Ncm

2
DT

∫

Q
Gµν

rr (Q)

∫

v
vµvν

[

2πδ(v · P )

v · P−v · (P + Q)−
(4.40)

+
2πδ(v · (P + Q))

v · P−v · P+
+

2πδ(v · P )

v · P+v · (P + Q)+

]

.

13Without this subtraction, the iǫ prescription in 1/(q0 + iǫ)2 would have had to be explicitly kept.
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Figure 13: Zoom on the ra structure of the propagators in the HTL diagrams with topology (C).

However, this contains manifestly ill-defined factors such as δ(v · P )/v · P−. These ill-

defined expressions are a typical example of pinch singularities and are due to cuts (i) and

(iii) of figure 13, which are attempting to provide self-energy corrections to an on-shell

propagator. However, as is well-known, such pinch singularities always cancel out, and

in the end one typically obtains expression possessing a “gain-term, loss-term” type of

structure characteristic of Boltzmann-like transport equations (see e.g. [37]). In our case

the simplest way to regulate the pinch singularities is to use the space-time description of

the four-point HTL with two external Keldysh a indices,14 which is simply given by an

adjoint Wilson line along the trajectory of the light particle [27]:

Π> 00
(b) (P ) = −g2Ncm

2
DT

∫

v
vµvν

∫ ∞

−∞
dt e−itv·P

∫ t

0
dt′
∫ t′

0
dt′′
∫

Q
e−i(t′−t′′)v·Q Gµν

rr (Q).

(4.41)

Here t is the time separation between the two endpoints of the Wilson line and the integrand

gives the expectation value of a Wilson line in a fluctuating background gauge field, the

Wilson line being expanded to second order in the background field and the fluctuations

being described by the Grr correlator. Performing the integrations over the time arguments

and using the symmetry of Grr(Q) to drop terms which are odd under Q → −Q, one obtains

the well-defined integral:

Π> 00
(b) (P ) = g2Ncm

2
DT

∫

v
vµvν

∫

Q
Gµν

rr (Q) 2π
δ(v · (Q + P )) − δ(v · P )

(v · Q)2
. (4.42)

which has a transparent structure as the sum of a gain term and a loss term.

To evaluate eq. (4.42) we first rotate q so that its z axis lies aligned with v. The

remaining angular integration is over the dot product u ≡ v · p/p. Although u integra-

tion naturally ranges between -1 and 1, by noting that one would obtain zero if it were

extended to cover the whole real axis, one can trade it for an integration over |u| ≥ 1,

which we find more convenient for numerical purposes. Upon performing the p integration

eq. (4.24), rescaling variables by mD and factoring out a numerical prefactor, one obtains

the contribution to dimensionless C eq. (2.5):

C(C) = 6π

∫

p

−1

(1 + p2)2

∫ ∞

1

du

u2

∫

q

[

G00
rr(up + qz, q) + (1 − q2

z/q
2)GT

rr(up + qz, q)
]

/T

≃ −0.132916 (4.43)

14The result we obtain with this regulator agrees with what one would obtain by regulating the pinch

singularities by resumming self-energies into the propagators. Indeed, the two regularization methods only

differ on frequency scales of order the collisional width (damping rate) Γ ∼ g2T , whilst the effects we are

looking at take place on the frequency scale gT .
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where the correlators Grr are to be evaluated in the soft p0 approximation Grr(P ) =

(GR(P )−GA(P ))T/q0. Although eq. (4.43) can be simplified somewhat (for instance either

the u or the p integration, at fixed up, can be done by hand), we had to evaluate it using

numerical quadrature. One encounters pole and cut types of contributions in the transverse

and longitudinal channels. The result turns out to be almost completely determined by

the contribution from the transverse pole, which produces −0.113353 by itself. Thus the

important physics described by this diagram is not that of overlapping scattering events,

but rather that of tree-level Coulomb scattering processes accompanied with the emission

or absorption of a soft transverse gluon (however we do not expect diagram (C) to give a

gauge-invariant account of these processes by itself, as the emitted transverse gluon may

also be emitted at the exchange gluon, yielding diagrams that are included in (A).)

4.6 The diagram (D)

This diagram involves two insertions of a fluctuating gauge field along the heavy quark’s

adjoint Wilson line eq. (4.2), and can be written as:

κ(D) =
−CHg4Nc

3

∫

P,Q

∫ ∞

−∞
dt

∫ t

0
dt′
∫ t′

0
dt′′ e−itp0

e−i(t′−t′′)q0

p2 G00
rr(P )G00

rr(Q). (4.44)

The structure of this expression is very similar to that of eq. (4.41), met in considering

diagram (C), the only difference now being that the Wilson lines lie along the static tra-

jectory of the heavy quark, as opposed to the light-like trajectories of the light plasma

particles. Upon performing the time integrations, rescaling variables by mD and scaling

out the numerical prefactor CHg4T 2mD/18π, we obtain the dimensionless contribution:

C(D) = 6π

∫

p,q

∫

dq0

2π
p2 G00

rr(q
0, p) − G00

rr(0, p)

q2
0

G00
rr(q

0, q)

≃ 0.0675263 . (4.45)

This was obtained by means of numerical quadrature; the integral splits into pole-pole

(≃ 0.0474), pole-cut (≃ 0.0261) and cut-cut (≃ 0.0097) contributions, which respectively

require one-, two-, and three-dimensional integrals. In addition there is a contribution

coming from the zero-frequency term G00
rr(0, p) (≃ −0.0156), whose support in the q0 > p

region needs to be handled separately; these integrals posed no particular difficulty.

This exhausts the diagrams contributing the the momentum diffusion coefficient at

next-to-leading order in QCD. Taking the sum of the numbers we obtained we find C̃ ≃
1.4946, with C̃ as in eq. (2.5).

5. N=4 super Yang-Mills

Our setup for N=4 SYM was described in section 2.4. To perform the next-to-leading

order calculation we need the appropriate generalization of the force-force correlator and

Wilson line appearing in eq. (4.2):

κ(SYM) =
λ2

6dA

∫ ∞

−∞
dt 〈∂i(A0 + φ)a(t)

[

Pe
R t
0

dt′[A0+φ, ·]
]ab

∂i(A0 + φ)b(0)〉 , (5.1)
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where φ stands for the (canonically normalized) real scalar field of SYM which couples

to the nonrelativistic heavy quark. The derivation of this formula is identical to that of

eq. (4.2); one must account for the influence of the scalar field on the eikonal propagation

of the heavy quark and on the force it feels.15 In expanding the correlator eq. (5.1) into

powers of A0 and φ only the terms with even powers of φ have to be kept, since correlators

of odd powers of φ’s vanish by virtue of the global SU(4) R-symmetry of N=4 SYM. The

power-counting is the same as for QCD: we need to retain the diagrams with two soft loops.

The nonvanishing ones, which we did not previously compute in dealing with QCD, are

depicted in figure 14.

Interestingly, these diagrams are significantly easier to evaluate than those of the

preceding section, due to the simplicity of HTL amplitudes involving soft scalars: the

HTL scalar self-energy reduces to a momentum-independent mass shift m2
S = λT 2, and

there exists no HTL effective vertex with external scalars [38]. These features are generic

to theories containing scalar fields (with no cubic scalar self-interactions). Physically,

the absence of an imaginary part (Landau cut) in the soft scalar two-point function

(from which the momentum-independence of the real part of the self-energy follows, by

a Kramers-König relation) can be attributed to the spin-suppression of the processes

by which soft virtual scalars would be produced by the small-angle scattering of light

plasma particles with spin. Indeed these processes, namely Yukawa scattering of fermions

and gluon-scalar conversion, both involve a change in the helicity of the light particle.

Since the soft virtual scalar carries no polarization tensor, the matrix elements for these

processes must be proportional to the deflection angle, which is O(g) in the HTL limit.

Exactly the same mechanism prevents a background scalar field from interfering with the

eikonal propagation of relativistic particles with spin, thus suppressing the insertion of

external scalar legs onto existing HTL amplitudes.

Perhaps among the most conceptually transparent sources of NLO corrections from

soft scalars is that stemming from the imaginary part of the gluon self-energy diagram (A)

of figure 14. This diagram produces a negative correction, due to the reduced phase space

available for scattering against a massive scalar. Actually, this diagram naturally combines

with diagram (D’) and with the part of diagram (B) in which the zero-frequency gluon

propagator (which is the rightmost propagator) is a retarded propagator: their sum forms

a single logical unit, which accounts for the effect of the scalar mass to the tree processes

described by the second line of eq. (2.6):

δκ(SYM) =
λ2

24π3

∫ ∞

0
q3dq

∫ ∞

q/2

k2dk

dEk/dk
nB(Ek)(1 + nB(Ek))

×
[

5

(q2 + m2
D)2

+

(

1

q2 + m2
D

− 1

2E2
k

)2
]∣

∣

∣

∣

∣

Ek=
√

k2+m2

S

Ek=k

. (5.2)

Here it is most convenient to trade the k integration for an integration over Ek: the

15Had we written the SYM version of eq. (3.1) instead of that of eq. (4.2), the force term would involve

the manifestly gauge-covariant combination (F i0 + Diφ). The spatial gauge fields Ai enter this expression

in just such a way as to give total time derivatives which can be dropped, as discussed above eq. (4.2).
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(D’)(D)

(A) (A’) (B) (B’)

(C)(B’’)

Figure 14: Additional diagrams that contribute to the next-to-leading order momentum diffusion

coefficient in N=4 SYM. Not shown, one permutation of (D).

integrand then becomes independent on the functional form of Ek, and the massive and

massless results only differ due to the different integration bounds at small Ek. The NLO

correction arises from the region q ∼ gT , in which case the Ek integration ranging from

(q/2) to
√

(q/2)2 + m2
S can be done within the approximation nB(Ek)(1 + nB(Ek)) =

T 2/E2
k . Upon rescaling variables by mD and factoring out λ2T 2mD/36π, one obtains the

following dimensionless contribution:

δC(SYM) = − 3

2π2

∫ ∞

0
q3dq

[

3

√

q2 + 2 − q

(q2 + 1)2
− 2

√

q2 + 2 − q

q
√

q2 + 2(q2 + 1)
+

2

3

(

1

q3
− 1

(q2 + 2)3/2

)

]

= − 3

2π2

(

−31
√

2

6
+

13π

4
− cosh−1(

√
2)

2

)

≃ −0.37429 (5.3)

The real part of the zero-frequency self-energy diagram (A) gives zero at NLO, as

can be seen using the argument employed in section 4.2: because the interaction vertices

are proportional to the loop frequency, in the imaginary time formalism the diagram is

saturated by the non-zero Matsubara frequencies, for which no O(g) corrections arise. The

tadpole diagram (C) produces a (negative) momentum-independent shift to m2
D:

δm2
D = 6λT

∫

d3q

(2π)3

[

1

q2 + m2
S

− 1

q2

]

= −3
√

2

4π
λTmD , (5.4)

which induces a positive shift to C,

δC(SYM) = 6π

∫

d3p

(2π)3
p2G00

rr(p)
3
√

2

2π(1 + p2)
=

9
√

2

8π
≃ 0.50643 (5.5)
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A more or less related virtual contribution arises from the terms in (B) in which the

zero-frequency gluon propagator is cut:

δκ(SYM) =
λ2

6
2i

∫

p,Q
p2Grr(p)

[

G(S)
rr (Q)G

(S)
R (R) + G

(S)
R (Q)G(S)

rr (R)
]

. (5.6)

The pattern of propagators in the bracket is the same as usually arises in the calculation

of one-loop retarded self-energies, and because the corresponding external momentum P

carries zero frequency, one finds that the dominant result at soft p can be expressed in terms

of the contribution from the zero Matsubara frequency. This can be derived from eq. (5.6)

by writing Grr(Q) = (GR(Q) − GA(Q))T/(q0 − iǫ) in the first term, and using analyticity

in the upper-half q0 plane to drop the GA(Q) contribution, thus turning this term into

GR(Q)GR(R)T/(q0 − iǫ). Similar manipulations on the second term of the bracket yield

GR(Q)GR(R)T/(r0−iǫ), which cancels against the first leaving only a δ-function at q0 = 0.

Rescaling variables by mD one thus obtains the dimensionless contribution:

δC(SYM) = 12π2

∫

p,q

p

(p2 + 1)2
1

(q2 + 1
2)(r2 + 1

2)
=

3

2π

∫ ∞

0

p2 dp

(1 + p2)2
tan−1 p√

2
≃ 0.37044 .

(5.7)

Corrections to the real part of the scalar self-energy are irrelevant at NLO, due to the

vanishing of the imaginary part of the HTL scalar self-energy. The corrections (A’) to the

imaginary part of the scalar self-energy naturally combine with diagrams (B’), (B”) and

(D) to form a single logical unit (in diagrams (B’) and (B”) the zero-frequency scalar prop-

agator must be a retarded propagator, again because the imaginary part of the HTL scalar

self-energy vanishes.) Together they describe the effects of the scalar mass and plasmon

dispersion relation on tree-level gluon-scalar scattering, as well as new processes, involv-

ing physical longitudinal plasmons in the external states or overlapping scattering events

(associated with gluon propagators in the Landau cut.) Processes involving longitudinal

gluons also occur in a Compton-like channel, which interferes with the scalar-exchange

channel: this is what diagrams (B’), (B”) and (D) account for. Using formulae eq. (4.34)

and eq. (4.45) these diagrams add up to:

δC(SYM) = 6π

∫

p,Q
G(S)

rr (R)



4p2GT
rr(Q)

p2 − (p·q)2
q2

(p2+ 1
2)2

+ p2G00
rr(Q)

(

q0

p2+ 1
2

− 1

q0

)2

− q2

q2
0

G00
rr(q, 0)





≃ −0.31086 . (5.8)

The contribution from the transverse gauge field is linearly divergent at large momenta,

where it degenerates to the tree-level contribution which was already included in eq. (2.6);

this must be subtracted. What we have integrated numerically is the difference between

eq. (5.8) and the same expression evaluated with the tree Grr propagators, which is given

by a convergent integral. The integral splits into pole-pole and pole-cut contributions, with

the largest contribution arising from the transverse gluon pole, which gives ≃ −0.283.

This exhausts the list of NLO contributions whose origin is proper to the SYM theory.

Taking the sum of eqs. (5.3), (5.5), (5.7) and (5.8) we obtain the next-to-leading order

coefficient C̃(SYM) = 0.19172.
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A. The functions M00(Q, R) and L(Q)

The functions M00(Q,R) and L(Q) have appeared in some form or the other in previous

work ([35, 36, 18], to cite a few.) The function L(Q) is familiar from the longitudinal HTL

gluon self-energy:

L(Q) =

∫

dΩv

4π

1

v · Q−

=
−1

2q
ln

(

q0 + q + iǫ

q0 − q + iǫ

)

. (A.1)

The branch of the logarithm is such that this function is real for time-like Q, and acquires

a positive imaginary part at space-like Q, the so-called Landau cut.

To understand the analytic structure of M00(Q,R) we find convenient to express it as

a sum of two terms,

M00(Q,R) = M00(P,Q) + M00(P,R) , (A.2)

and to analyze those two terms separately. Actually, the splitting of eq. (A.2) as a sum

of two terms is precisely how the function Mµν(Q,R) arose in the first place, in the HTL

effective vertices of figure 9, so in a sense it is rather natural. In [18] an expression for the

(Lorentz-invariant) function M00(P,Q) was obtained by first combining the denominators

1/v · P− and 1/v · Q− by means of standard Feynman parameterization:

M00(Q,P ) =

∫

v

1

v · P−v · Q− (A.3)

=

∫ 1

0
dx

∫

v

1

[x v · Q + (1 − x)v · P − iǫ]2
=

∫ 1

0
dx

−1

(xQ + (1 − x)P )2 − iǫq0

=
−1

2
√
−∆

ln

(

Q · P +
√
−∆

Q · P −
√
−∆

)∣

∣

∣

∣

q0≡q0+iǫ

, (A.4)

where:

∆ = Q2P 2 − (Q · P )2. (A.5)

Proper care must be given to the iǫ prescriptions in eq. (A.4), since we are interested

in this function and its discontinuities at physical values of the momenta. The correct

procedure follows from noting that, from its definition, the function M00(Q,P ) is analytic

in the upper half complex q0 plane. Its integral representation is unambiguous for Q time-

like, in which case it has no discontinuity across the real axis, as a function of q0, with fixed

p0, p and q. Using a change of variables v → −v in the integral representation eq. (A.3),
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one shows that flipping the sign of q0 in M00(Q,P ) is equivalent to complex conjugation.

Explicit expressions, when q0 ≥ 0, are:

M00(Q,P ) =



















































































−1

2p
√

q2
0 − q2

⊥



ln





p · q + p
√

q2
0 − q2

⊥

−p · q + p
√

q2
0 − q2

⊥



+ iπ



 , q0 > q,

−1

2p
√

q2
0 − q2

⊥



ln





p · q + p
√

q2
0 − q2

⊥

p · q − p
√

q2
0 − q2

⊥





+2πi θ(−p · q)
]

, q⊥ < q0 < q,

−1

p
√

q2
⊥ − q2

0



tan−1





p
√

q2
⊥ − q2

0

p · q







 , 0 < q0 < q⊥,

(A.6)

where all logarithms are real, and the arctangents range from 0 to π.

The equations eq. (A.6) can be understood from eq. (A.4) as follows. When q0 > q,

the magnitude of the square root is automatically larger than |q · p|, thus the denominator

in the logarithm in eq. (A.4) is negative. Since this denominator has a small negative

imaginary part, the logarithm acquires a positive phase +iπ. This choice of branch can be

verified from the large q0 limit, where M00(Q,R) → −iπ/2pq0 according to its definition

eq. (A.3). When q0 crosses q (Q becomes spacelike), the square root becomes equal to

|q · p|, hence either the numerator or the denominator of the logarithm vanishes. Which

one vanishes depends on the sign of q ·p, explaining the appearance of the θ(−q ·p) function

in the second case. Finally, when q0 < q⊥, the square root becomes imaginary and the

logarithm goes over to an arctangent.

The function K00(Q,P ) is (half) the discontinuity of M00(Q,P ) across

the real q0 axis, and can be extracted from the previous results by writing

K(Q,P ) = (M(Q,P ) + M(−Q,P ))/2:

K00(Q,P ) =































0, q < q0,
iπ sgn (p · q)
2p
√

q2
0 − q2

⊥

, q⊥ < q0 < q,

−π

2p
√

q2
⊥ − q2

0

, 0 < q0 < q⊥.

(A.7)
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